Для решения данной задачи будем использовать операции с множествами (логические операции).
Даны следующие условия:
- (A \cup B = 15000) (шоколад I зефир = 15000) — объединение множества A (шоколад) и множества B (зефир).
- (A \cap B = 8000) (шоколад & зефир = 8000) — пересечение множества A (шоколад) и множества B (зефир).
- (B = 12000) (зефир = 12000) — множество B (зефир).
Необходимо найти количество элементов в множестве A (шоколад).
Рассмотрим формулу для объединения множеств:
[ |A \cup B| = |A| + |B| - |A \cap B| ]
Подставим известные значения:
[ 15000 = |A| + 12000 - 8000 ]
Теперь решим это уравнение для нахождения ( |A| ):
[ 15000 = |A| + 4000 ]
[ |A| = 15000 - 4000 ]
[ |A| = 11000 ]
Таким образом, количество элементов в множестве A (шоколад) равно 11000.