Загадано число из промежутка от 32 до 64. Какое количество вопросов необходимо задать для угадывания...

Тематика Информатика
Уровень 1 - 4 классы
угадывание числа количество вопросов количество информации бинарный поиск промежуток 32 64 теория информации логарифм математические вычисления
0

Загадано число из промежутка от 32 до 64. Какое количество вопросов необходимо задать для угадывания числа и какое количество информации при этом получится?

avatar
задан 3 месяца назад

2 Ответа

0

Для угадывания числа из промежутка от 32 до 64 необходимо задать 6 вопросов. Это можно объяснить следующим образом: начинаем с вопроса о середине промежутка (32+64)/2 = 48. Затем, в зависимости от ответа, задаем вопрос о середине соответствующей половины промежутка и т.д.

Количество информации, получаемое при каждом вопросе, можно оценить по формуле Хартли: I = log2(N), где N - количество возможных вариантов ответа на вопрос. В данном случае, у нас два варианта ответа на каждый вопрос (меньше или больше загаданное число), поэтому каждый вопрос дает нам 1 бит информации.

Таким образом, при 6 вопросах мы получим 6 бит информации, что позволит нам точно угадать число из заданного промежутка.

avatar
ответил 3 месяца назад
0

Для угадывания числа из промежутка от 32 до 64 необходимо задать определённое количество вопросов, чтобы сузить диапазон возможных чисел до одного единственного числа. Количество таких вопросов можно определить, используя концепцию двоичного поиска и теорию информации.

Двоичный поиск

Двоичный поиск (или бинарный поиск) — это алгоритм, который позволяет находить целое число из упорядоченного диапазона чисел, задавая вопросы вида "Больше или меньше?" (или "Больше или равно?"). Каждый такой вопрос делит диапазон на две равные или почти равные части.

Шаги решения

  1. Определение диапазона чисел:

    • Диапазон задан от 32 до 64 включительно.
    • Количество чисел в этом диапазоне: ( 64 - 32 + 1 = 33 ).
  2. Вычисление количества вопросов:

    • Для определения количества вопросов, необходимого для нахождения числа в диапазоне из ( n ) чисел, используется формула: ( \lceil \log_2 n \rceil ), где ( \lceil x \rceil ) — это функция округления вверх.
    • ( n = 33 ), значит, ( \log_2 33 \approx 5.04 ).
    • Округляем вверх: ( \lceil 5.04 \rceil = 6 ).

    Таким образом, потребуется задать 6 вопросов, чтобы гарантированно угадать число в диапазоне от 32 до 64.

Количество информации

Количество информации, необходимое для угадывания числа, измеряется в битах. Один бит информации — это количество информации, содержащееся в ответе на вопрос "Да" или "Нет".

  1. Вычисление количества информации:

    • Количество информации ( I ) определяется формулой ( I = \log_2(n) ).
    • Для ( n = 33 ), ( I = \log_2 33 \approx 5.04 ) бит.

    Таким образом, угадывание числа из диапазона 32 до 64 требует примерно 5.04 бит информации.

Итог

Для угадывания числа из промежутка от 32 до 64 необходимо задать 6 вопросов. При этом количество информации, которое потребуется, составляет примерно 5.04 бит.

avatar
ответил 3 месяца назад

Ваш ответ

Вопросы по теме